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In Praise of Engineering a Compiler Second Edition

Compilers at? a rich area of study, drawing together the whole world of computer science in

one, elegant construction. Cooper and Torczon have succeeded in creating a welcoming guide to

these software systems, enhancing this new edition with clear lessons and the details you simply

must get right, all the while keeping the big picture firmly in view. Engineering a Compiler is an

invaluable companion for anyone new to the subject.

Michael D. Smith

Dean of the Faculty of Arts and Sciences

John H. Finley, Jr. Professor of Engineering and Applied Sciences, Harvard University

The Second Edition of Engineering a Compiler is an excellent introduction to the construction

of modern optimizing compilers. The authors draw from a wealth of experience in compiler

construction in order to help students grasp the big picture while at the same time guiding

them through many important but subtle details that must be addressed to construct an effec-

tive optimizing compiler. In particular, this book contains the best introduction to Static Single

Assignment Form that I've seen.

Jeffery von Ronne

Assistant Professor

Department of Computer Science

The University of Texas at San Antonio

Engineering a Compiler increases its value as a textbook with a more regular and consistent

structure, and with a host of instructional aids: review questions, extra examples, sidebars, and

marginal notes. It also includes a wealth of technical updates, including more on nontraditional

languages, real-world compilers, and nontraditional uses of compiler technology. The optimi-

zation material—already a signature strength—has become even more accessible and clear.

Michael L. Scott

Professor

Computer Science Department

University of Rochester

Author of Programming Language Pragmatics

Keith Cooper and Linda Torczon present an effective treatment of the history as well as a

practitioner's perspective of how compilers are developed. Theory as well as practical real

world examples of existing compilers (i.e. LISP, FORTRAN, etc.) comprise a multitude of effec-

tive discussions and illustrations. Full circle discussion of introductory along with advanced

"allocation" and "optimization" concepts encompass an effective "life-cycle" of compiler

engineering. This text should be on every bookshelf of computer science students as well as

professionals involved with compiler engineering and development.

David Orleans

Nova Southeastern University
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About the Cover

The cover of this book features a portion of the drawing, "The Landing of the Ark," which

decorates the ceiling of Duncan Hall at Rice University. Both Duncan Hall and its ceiling were

designed by British architect John Outram. Duncan Hall is an outward expression of architec-

tural, decorative, and philosophical themes developed over Outram's career as an architect. The

decorated ceiling of the ceremonial hall plays a central role in the building's decorative scheme.

Outram inscribed the ceiling with a set of significant ideas—a creation myth. By expressing

those ideas in an allegorical drawing of vast size and intense color, Outram created a signpost

that tells visitors who wander into the hall that, indeed, this building is not like other buildings.

By using the same signpost on the cover of Engineering a Compiler, the authors intend to signal

that this work contains significant ideas that are at the core of their discipline. Like Outram's

building, this volume is the culmination of intellectual themes developed over the authors'
professional careers. Like Outram's decorative scheme, this book is a device for communicating

ideas. Like Outram's ceiling, it presents significant ideas in new ways.

By connecting the design and construction of compilers with the design and construction of
buildings, we intend to convey the many similarities in these two distinct activities. Our many
long discussions with Outram introduced us to the Vitruvian ideals for architecture: commodity,

firmness, and delight. These ideals apply to many kinds of construction. Their analogs for com-
piler construction are consistent themes of this text: function, structure, and elegance. Function
matters; a compiler that generates incorrect code is useless. Structure matters; engineering detail
determines a compiler's efficiency and robustness. Elegance matters; a well-designed compiler,
in which the algorithms and data structures flow smoothly from one pass to another, can be a
thing of beauty.

We are delighted to have John Outram's work grace the cover of this book.

Duncan Hall's ceiling is an interesting technological artifact. Outram drew the original design
on one sheet of paper. It was photographed and scanned at 1200 dpi yielding roughly 750 MB
of data. The image was enlarged to form 234 distinct 2 x 8 foot panels, creating a 52 x 72 foot
image. The panels were printed onto oversize sheets of perforated vinyl using a 12 dpi acrylic-
ink printer. These sheets were precision mounted onto 2 x 8 foot acoustic tiles and hung on the
vault's aluminum frame.
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