
ENGINEERING

COMPILER
SECOND EDITION

Keith D. Cooper Linda Torczon
MORGAN KAUFMANN

In Praise of Engineering a Compiler Second Edition

Compilers at? a rich area of study, drawing together the whole world of computer science in

one, elegant construction. Cooper and Torczon have succeeded in creating a welcoming guide to

these software systems, enhancing this new edition with clear lessons and the details you simply

must get right, all the while keeping the big picture firmly in view. Engineering a Compiler is an

invaluable companion for anyone new to the subject.

Michael D. Smith

Dean of the Faculty of Arts and Sciences

John H. Finley, Jr. Professor of Engineering and Applied Sciences, Harvard University

The Second Edition of Engineering a Compiler is an excellent introduction to the construction

of modern optimizing compilers. The authors draw from a wealth of experience in compiler

construction in order to help students grasp the big picture while at the same time guiding

them through many important but subtle details that must be addressed to construct an effec-

tive optimizing compiler. In particular, this book contains the best introduction to Static Single

Assignment Form that I've seen.

Jeffery von Ronne

Assistant Professor

Department of Computer Science

The University of Texas at San Antonio

Engineering a Compiler increases its value as a textbook with a more regular and consistent

structure, and with a host of instructional aids: review questions, extra examples, sidebars, and

marginal notes. It also includes a wealth of technical updates, including more on nontraditional

languages, real-world compilers, and nontraditional uses of compiler technology. The optimi-

zation material—already a signature strength—has become even more accessible and clear.

Michael L. Scott

Professor

Computer Science Department

University of Rochester

Author of Programming Language Pragmatics

Keith Cooper and Linda Torczon present an effective treatment of the history as well as a

practitioner's perspective of how compilers are developed. Theory as well as practical real

world examples of existing compilers (i.e. LISP, FORTRAN, etc.) comprise a multitude of effec-

tive discussions and illustrations. Full circle discussion of introductory along with advanced

"allocation" and "optimization" concepts encompass an effective "life-cycle" of compiler

engineering. This text should be on every bookshelf of computer science students as well as

professionals involved with compiler engineering and development.

David Orleans

Nova Southeastern University

About the Authors

Keith D. Cooper is the Doerr Professor of Computational Engineering at Rice University. He

has worked on a broad collection of problems in optimization of compiled code, including inter-

procedural data-flow analysis and its applications, value numbering, algebraic reassociation,

register allocation, and instruction scheduling. His recent work has focused on a fundamental

reexamination of the structure and behavior of traditional compilers. He has taught a variety of

courses at the undergraduate level, from introductory programming through code optimization

at the graduate level. He is a Fellow of the ACM.

Linda Torczon, Senior Research Scientist, Department of Computer Science at Rice Uni-

versity, is a principal investigator on the Platform-Aware Compilation Environment project

(PACE), a DARPA-sponsored project that is developing an optimizing compiler environment

which automatically adjusts its optimizations and strategies to new platforms. From 1990 to

2000, Dr. Torczon served as executive director of the Center for Research on Parallel Compu-

tation (CRPC), a National Science Foundation Science and Technology Center. She also served

as the executive director of HiPerSoft, of the Los Alamos Computer Science Institute, and of

the Virtual Grid Application Development Software Project (VGrADS).

Engineering a Compiler
Second Edition

Keith D. Cooper
Nil

Linda Torczon
Rice University

Houston, Texas

GIFT OF THE ASIA FOUNDATION
NOT FOR RE-SALE

QUÄ TÅNG cÜA CHAU Å
KHåNG E)tfVC i)ÅN 141

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO SINGAPORE • SYDNEY TOKYO

ELSEVIER Morgan Kaufmann Publishers is an imprint of Elsevier

IVI<

Acquiring Editor: Todd Green
Development Editor: Nate McFadden
Project Manager: Andre Cuello
Designer: Alisa Andreola

Cover Image: "The Landing of the Ark," a vaulted ceiling-design whose iconography was narrated, designed, and drawn by John

Outram of John Outram Associates, Architects and City Planners, London, England. To read more visit www.johnoutram.com/rice.html.

Morgan Kaufmann is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

Copyright @ 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including

photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on

how to seek permission further information about the Publisher's permissions policies and our arrangements with organizations such as

the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted

herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes

in research methods or professional practices may become necessary. Practitioners and researchers must always rely on their own

experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods

they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor,the authors, contributors, or editors, assume any liability for any injury and/or

damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 9784)-12-088478-0

For information on all Morgan Kaufmann publications

visit our website at www.mkp.com

Printed in the United States of America

11 12 13 14 1098765432

Working together to grow
libraries in developing countries

www.elsevier.com I www.bookaid.org I www.sabre.org

ELSEVI ER BOOK
International

All) abre Foundation

About the Cover

The cover of this book features a portion of the drawing, "The Landing of the Ark," which

decorates the ceiling of Duncan Hall at Rice University. Both Duncan Hall and its ceiling were

designed by British architect John Outram. Duncan Hall is an outward expression of architec-

tural, decorative, and philosophical themes developed over Outram's career as an architect. The

decorated ceiling of the ceremonial hall plays a central role in the building's decorative scheme.

Outram inscribed the ceiling with a set of significant ideas—a creation myth. By expressing

those ideas in an allegorical drawing of vast size and intense color, Outram created a signpost

that tells visitors who wander into the hall that, indeed, this building is not like other buildings.

By using the same signpost on the cover of Engineering a Compiler, the authors intend to signal

that this work contains significant ideas that are at the core of their discipline. Like Outram's

building, this volume is the culmination of intellectual themes developed over the authors'
professional careers. Like Outram's decorative scheme, this book is a device for communicating

ideas. Like Outram's ceiling, it presents significant ideas in new ways.

By connecting the design and construction of compilers with the design and construction of
buildings, we intend to convey the many similarities in these two distinct activities. Our many
long discussions with Outram introduced us to the Vitruvian ideals for architecture: commodity,

firmness, and delight. These ideals apply to many kinds of construction. Their analogs for com-
piler construction are consistent themes of this text: function, structure, and elegance. Function
matters; a compiler that generates incorrect code is useless. Structure matters; engineering detail
determines a compiler's efficiency and robustness. Elegance matters; a well-designed compiler,
in which the algorithms and data structures flow smoothly from one pass to another, can be a
thing of beauty.

We are delighted to have John Outram's work grace the cover of this book.

Duncan Hall's ceiling is an interesting technological artifact. Outram drew the original design
on one sheet of paper. It was photographed and scanned at 1200 dpi yielding roughly 750 MB
of data. The image was enlarged to form 234 distinct 2 x 8 foot panels, creating a 52 x 72 foot
image. The panels were printed onto oversize sheets of perforated vinyl using a 12 dpi acrylic-
ink printer. These sheets were precision mounted onto 2 x 8 foot acoustic tiles and hung on the
vault's aluminum frame.

viii

Contents

About the Authors

About the Cover

Preface .

CHAPTER 1 Overview of Compilation

1.1 Introduction

1.2 Compiler Structure .

1.3 Overview of Translation

1.3.1 The Front End

1.3.2 The Optimizer

1.3.3 The Back End

1.4 Summary and Perspective

Chapter Notes

Exercises

CHAPTER 2 Scanners.

2.1 Introduction

2.2 Recognizing Words

2.2.1 A Formalism for Recognizers .

2.2.2 Recognizing More Complex Words .

2.3 Regular Expressions

2.3.1 Formalizing the Notation

2.3.2 Examples

2.3.3 Closure Properties of RES

2.4 From Regular Expression to Scanner

2.4.1 Nondeterministic Finite Automata

2.4.2 Regular Expression to NFA: Thompson's

Construction

2.4.3 NFA to DFA: The Subset Construction

2.4.4 DFA to Minimal DFA: Hopcroft's Algorithm

2.4.5 Using a DFA as a Recognizer

2.5 Implementing Scanners

2.5.1 Table-Driven Scanners

2.5.2 Direct-Coded Scanners .

2.5.3 Hand-Coded Scanners .

2.5.4 Handling Keywords

iv

viii

xix

1

6
9

10

14

15

21

22

23

25

25

27

29

31

34

35

36

39

42

43

45

47

53

57

59

60

65

69

72

ix

X Contents

2.6 Advanced Topics .
2.6.1 DFA to Regular Expression

2.6.2 Another Approach to DFA Minimization:

Brzozowski 's Algorithm

2.6.3 Closure-Free Regular Expressions
2.7 Chapter Summary and Perspective

Chapter Notes .

Exercises

CHAPTER 3 Parsers..

3.1 Introduction

3.2 Expressing Syntax

3.2.1 Why Not Regular Expressions? .

3.2.2 Context-Free Grammars

3.2.3 More Complex Examples .

3.2.4 Encoding Meaning into Structure

3.2.5 Discovering a Derivation for an Input String
3.3 Top-Down Parsing .

3.3.1 Transforming a Grammar for Top-Down Parsing
3.3.2 Top-Down Recursive-Descent Parsers
3.3.3 Table-Driven LL(I) Parsers .

3.4 Bottom-Up Parsing

3.4.1 The LR(I) Parsing Algorithm

3.4.2 Building LR(I) Tables
3.4.3 Errors in the Table Construction

3.5 Practical Issues .

3.5.1 Error Recovery .

3.5.2 Unary Operators

3.5.3 Handling Context-Sensitive Ambiguity
3.5.4 Left versus Right Recursion

3.6 Advanced Topics

3.6.1 Optimizing a Grammar

3.6.2 Reducing the Size of LR(I) Tables .
3.7 Summary and Perspective

Chapter Notes .

Exercises

74

74

75

77

78

78

80

83

83

85

85

86

89

92
95

96

98

108

110

116

118

124

136

141

142

143

147

148

150

155

156

157

CHAPTER 4 Context-Sensitive Analysis

4.1 Introduction

4.2 An Introduction to IYpe Systems

4.2.1 The Purpose of IYpe Systems .

4.2.2 Components of a Type System

4.3 The Attribute-Grammar Framework

4.3.1 Evaluation Methods

4.3.2 Circularity

4.3.3 Extended Examples

4.3.4 Problems with the Attribute-Grammar Approach

4.4 Ad Hoc Syntax-Directed Translation

4.4.1 Implementing Ad Hoc Syntax-Directed Translation

4.4.2 Examples
4.5 Advanced Topics

4.5.1 Harder Problems in Type Inference .

4.5.2 Changing Associativity

4.6 Summary and Perspective

Chapter Notes

Exercises

CHAPTER 5 Intermediate Representations.

5.1 Introduction

5.1.1 A Taxonomy of Intermediate Representations

5.2 Graphical IRS .

5.2.1 Syntax-Related Trees

5.2.2 Graphs

5.3 Linear IRS
5.3.1 Stack-Machine Code .

5.3.2 Three-Address Code

5.3.3 Representing Linear Codes

5.3.4 Building a Control-Flow Graph from a Linear Code

5.4 Mapping Values to Names

5.4.1 Naming Temporary Values

5.4.2 Static Single-Assignment Form

5.4.3 Memory Models

Contentsxi

161

161

164

165

170

182

186

187

187

194

198

199

202

211

211

213

215

216

217

221

221

223

226

226

230

235

237

237

238

241

243

246

250

xii Contents

5.5 Symbol Tables

5.5.1 Hash Tables

5.5.2 Building a Symbol Table

5.5.3 Handling Nested Scopes .

5.5.4 The Many Uses for Symbol Tables

5.5.5 Other Uses for Symbol Table Technology

5.6 Summary and Perspective .

Chapter Notes

Exercises

CHAPTER 6 The Procedure Abstraction

6.1 Introduction

6.2 Procedure Calls

6.3 Name Spaces .

6.3.1 Name Spaces of Algol-like Languages .

6.3.2 Runtime Structures to Support Algol-like

Languages .

6.3.3 Name Spaces of Object-Oriented Languages

6.3.4 Runtime Structures to Support Object-Oriented

Languages .

6.4 Communicating Values Between Procedures

6.4.1 Passing Parameters

6.4.2 Returning Values .

6.4.3 Establishing Addressability

6.5 Standardized Linkages .

6.6 Advanced Topics .

6.6.1 Explicit Heap Management .

6.6.2 Implicit Deallocation

6.7 Summary and Perspective

Chapter Notes

Exercises

CHAPTER 7 Code Shape.

7.1 Introduction

7.2 Assigning Storage Locations .

7.2.1 Placing Runtime Data Structures

7.2.2 Layout for Data Areas

7.2.3 Keeping Values in Registers

7.3 Arithmetic Operators

7.3.1 Reducing Demand for Registers

253

254

255

256

261

263

264

264

265

269

269

272

276

276

280

285

290

297

297

301

301

308

312

313

317

322

323

324

331

331

334

335

336

340

342

344

7.3.2 Accessing Parameter Values

7.3.3 Function Calls in an Expression .

7.3.4 Other Arithtnetic Operators .

7.3.5 Mixed-1Ype Expressions

7.3.6 Assignment as an Operator

7.4 Boolean and Relational Operators

7.4.1 Representations

7.4.2 Hardware Support for Relational Operations
7.5 Stoting and Accessing Arrays .

7.5.1 Referencing a Vector Element

7.5.2 Array Storage Layout

7.5.3 Referencing an Array Element

7.5.4 Range Checking

7.6 Character Strings

7.6.1 String Representations .

7.6.2 String Assignment

7.6.3 String Concatenation

7.6.4 String Length

7.7 Structure References

7.7.1 Understanding Structure Layouts .

7.7.2 Arrays of Structures

7.7.3 Unions and Runtime Tags

7.7.4 Pointers and Anonymous Values .

7.8 Control-Flow Constructs

7.8.1 Conditional Execution .

7.8.2 Loops and Iteration

7.8.3 Case Statements

7.9 Procedure Calls

7.9.1 Evaluating Actual Parameters

7.9.2 Saving and Restoring Registers .

7.10 Summary and Perspective .

Chapter Notes .

Exercises

CHAPTER 8 Introduction to Optimization

8.1 Introduction

8.2 Background ...

8.2.1 Examples .

8.2.2 Considerations for Optimization

8.2.3 Opportunities for Optimization

Contentsxiii

345

347

348

348

349

350

351

. 353

359

359

361

362

367

369

370

370

372

373

374

375

376

377

378

380

381

384

388

392

393

394

396

397

398

405

405

407

408

412

415

xiv Contents

8.3 Scope of Optimization

8.4 Local Optimization

8.4.1 Local Value Numbering

8.4.2 Tree-Height Balancing .

8.5 Regional Optimization .

8.5.1 Superlocal Value Numbering .

8.5.2 Loop Unrolling .

8.6 Global Optimization

8.6.1 Finding Uninitialized Variables with Live

Information

8.6.2 Global Code Placement .

8.7 Interprocedural Optimization .

8.7.1 Inline Substitution

8.7.2 Procedure Placement

8.7.3 Compiler Organization for Interprocedural

Optimization

8.8 Summary and Perspective .

Chapter Notes .

Exercises

CHAPTER 9 Data-Flow Analysis

9.1 Introduction

9.2 Iterative Data-How Analysis .

9.2.1 Dominance .

9.2.2 Live-Variable Analysis

9.2.3 Limitations on Data-Flow Analysis .

9.2.4 Other Data-Flow Problems

9.3 Static Single-Assignment Form

9.3.1 A Simple Method for Building SSA Form

9.3.2 Dominance Frontiers .

9.3.3 Placing 4-Functions

9.3.4 Renaming

9.3.5 Translation Out of SSA Form

9.3.6 Using SSA Form

9.4 Interprocedural Analysis .

9.4. I Call-Graph Construction .

9.4.2 Interprocedural Constant Propagation

9.5 Advanced Topics .

9.5.1 Structural Data-Flow Algorithms and Reducibility

9.5.2 Speeding up the Iterative Dominance Framework

417

420

420

428

437

437

441

445

445

451

457

458

462

467
469

470

471

475

475

477

478

482

487
490

495

496

497

500

505

510

515

519

520

522

526

527

530

9.6 Sununary and Perspective

Chapter Notes

Exercises

CHAPTER 10 Scalar Optimizations

CHAPTER 11

10.1 Introduction .

10.2 Eliminating Useless and Unreachable Code
10.2.1 Eliminating Useless Code
10.2.2 Eliminating Useless Control Flow
10.2.3 Eliminating Unreachable Code

10.3 Code Motion

10.3.1 Lazy Code Motion

10.3.2 Code Hoisting
10.4 Specialization

10.4.1 Tail-Call Optimization
10.4.2 Leaf-Call Optimization
10.4.3 Parameter Promotion

10.5 Redundancy Elimination
10.5.1 Value Identity versus Name Identity
10.5.2 Dominator-based Value Numbering

10.6 Enabling Other Transformations
10.6.1 Superblock Cloning

10.6.2 Procedure Cloning

10.6.3 Loop Unswitching

10.6.4 Renaming

10.7 Advanced Topics

10.7.1 Combining Optimizations
10.7.2 Strength Reduction

10.7.3 Choosing an Optimization Sequence

10.8 Summary and Perspective

Chapter Notes

Exercises

Instruction Selection

11.1 Introduction .

11.2 Code Generation

11.3 Extending the Simple Treewalk Scheme .

11.4 Instruction Selection via Tree-Pattern Matching

11.4.1 Rewrite Rules

11.4.2 Finding a Tiling

11.4.3 Tools

Contentsxv

533

534

535

539

539
544

544

547

550

551

551

559

560

561

562

563

565

565

566

569

570

571

572

573

575

575

580

591

592

593

594

597

597

600

603

610

611

616

620

xvi Contents

11.5 Instruction Selection via Peephole Optimization

11.5.1 Peephole Optimization

11.5.2 Peephole Transformers .

11.6 Advanced Topics

11.6.1 Learning Peephole Patterns .

11.6.2 Generating Instruction Sequences .

11.7 Summary and Perspective

Chapter Notes .

Exercises .

CHAPTER 12 Instruction Scheduling

12.1 Introduction

12.2 The Instruction-Scheduling Problem

12.2.1 Other Measures of Schedule Quality

12.2.2 What Makes Scheduling Hard?

12.3 Local List Scheduling

12.3.1 The Algorithm

12.3.2 Scheduling Operations with Variable Delays

12.3.3 Extending the Algorithm

12.3.4 Tie Breaking in the List-Scheduling

Algorithm

12.3.5 Forward versus Backward List Scheduling

12.3.6 Improving the Efficiency of List Scheduling

12.4 Regional Scheduling .

12.4.1 Scheduling Extended Basic Blocks

12.4.2 Trace Scheduling

12.4.3 Cloning for Context .

12.5 Advanced Topics
12.5.1 The Strategy of Software Pipelining .

12.5.2 An Algorithm for Software Pipelining .

12.6 Summary and Perspective

Chapter Notes

Exercises .

CHAPTER 13 Register Allocation

13.1 Introduction
13.2 Background Issues

13.2.1 Memory versus Registers

13.2.2 Allocation versus Assignment
13.2.3 Register Classes .

13.3 Local Register Allocation and Assignment .
13.3.1 Top-Down Local Register Allocation

621

622

629

632

632

633

634

635

637

639

639

643
648

649

651

651

654

655

655

656

660

661

661

663

666

670
673

673

675

679

679

681

681

682

683

684

685

13.3.2 Bottom-Up Local Register Allocation

13.3.3 Moving Beyond Single Blocks
13.4 Global Register Allocation and Assignment

13.4.1 Discovering Global Live Ranges .

13.4.2 Estimating Global Spill Costs

13.4.3 Interferences and the Interference Graph

13.4.4 Top-Down Coloring

13.4.5 Bottom-Up Coloring

13.4.6 Coalescing Copies to Reduce Degree .

13.4.7 Comparing Top-Down and Bottom-Up

Global Allocators

13.4.8 Encoding Machine Constraints in the

Interference Graph

13.5 Advanced Topics

13.5.1 Variations on Graph-Coloring Allocation

13.5.2 Global Register Allocation over SSA Form .

13.6 Summary and Perspective

Chapter Notes

Exercises

APPENDIXA ILOC.

APPENDIX B

Introduction

A.2 Naming Conventions .

A.3 Individual Operations .

A.3.1 Arithmetic

A.3.2 Shifts

A.3.3 Memory Operations .

A.3.4 Register-to-Register Copy Operations .

A.4 Control-Flow Operations .

A.4.1 Alternate Comparison and Branch Syntax

A.4.2 Jumps

A.5 Representing SSA Form

Data Structures.

Introduction

B.2 Representing Sets .

B.2.1 Representing Sets as Ordered Lists

B.2.2 Representing Sets as Bit Vectors

B.2.3 Representing Sparse Sets .

B.3 Implementing Intermediate Representations ...

B.3.1 Graphical Intermediate Representations

B.3.2 Linear Intermediate Forms

Contentsxvii

686

689

693

696

697

699

702

704

706

708

711

713

713

717

718

719

720

725

725

727

728

728

729

729

730

731

732

732

733

737

737

738

739
741

741
743

743

748

xviii Contents

B.4 Implementing Hash Tables

B.4.1 Choosing a Hash Function

B.4.2 Open Hashing

B.4.3 Open Addressing .

B.4.4 Storing Symbol Records

B.4.5 Adding Nested Lexical Scopes

BS A Flexible Symbol-Table Design

BIBLIOGRAPHY

INDEX

750

750

752

754

756

757

760

765

787

